B. Sc. IT Learning Objectives & Learning Outcomes

F.Y.B.Sc. (IT) (Sem I)

SN	LEARNING OBJECTIVES LEARNING OUTCOME							
	Imperative Programming							
1.	To introduce different programming paradigms	Students would be able to understand the						
	and develop logic for writing high level	basic concept of programming constructs						
	language programs.	and Procedure Oriented Programming.						
2.	To familiarize the students with the basic	Students would develop basic						
	understanding of flowcharts and algorithms	understanding of flowcharts, the concept of						
		algorithm and algorithmic thinking.						
	Digital Electr	ronics						
1.	To make students learn different types of	Students would understand and examine the						
	number systems.	structure of various number systems and its						
		application in digital design.						
2.	To make students acquire the basic knowledge	Students would develop the basic						
	of digital logic levels and application of	knowledge of digital logic and application						
	knowledge to understand digital electronics	of knowledge to understand digital						
	circuits.	electronics circuits.						
3.	To prepare students to perform the analysis and	Students would develop an ability to						
	design of various digital electronic circuits.	analyze and design various digital electronic						
		circuits.						
	Operating Sy	stems						
1.	To make students learn the fundamentals of	Students would develop an ability to						
	Operating Systems.	analyze the structure of OS and basic						
		architectural components involved in OS						
		design.						
2.	To make students learn the mechanisms of OS	Students would develop an ability to						
	to handle processes and threads and their	compare the various algorithms used for						
	communication.	management of memory, CPU scheduling,						
		file handling and I/O operations.						
3.	To make students gain knowledge on	Students would understand the Mutual						
	distributed operating system concepts that	exclusion, Deadlock detection and						
	includes architecture, mutual exclusion	agreement protocols of Distributed						
	algorithms, deadlock detection algorithms and	operating system						
	agreement protocols.							
	Discrete Mathe	ematics						
1.	To make students learn the basic principles of	Students would understand the basic						
	set, basic set equalities, the basic concepts of	principles of set, basic set equalities, the						
	relations and functions and the basic concepts	basic concepts of relations and functions.						
	of graphs and trees.							
2.	To make students learn writing an argument	Students would be able to write an						
	using logical notation and determine if the	argument using logical notation and						
	argument is valid or invalid.	determine if the argument is valid or						
		invalid.						
3.	To make students learn the basic concepts of	Students would be able to understand basic						

	data structures in mathematics.	concepts of graphs and trees.					
	Communication Skills						
1.	Acquaint students with the theoretical landscape	Students would understand process, nature					
	of communication as it applies to individual	and various domains of communication					
	employees in business	application.					
2.	To familiarize students with application of this	Students would familiarize with basic					
	theory for effective written, oral and	conventions and principles of effective					
	interpersonal communication.	written, oral and interpersonal					
		communication.					
	Imperative Programm						
1.	To make students develop algorithms and write	Students would develop the use of the C					
	C programs for the same	programming language to implement					
		various algorithms, and develop the basic					
		concepts and terminology of programming					
	D. 1. 171	in general.					
	Digital Electronics Practical						
1.	To acquire the basic knowledge of digital logic	Students would analyze different types of					
	levels and application of knowledge to	digital electronic circuits using various					
	understand digital electronics circuits.	logical tools and know the techniques to					
		prepare the most simplified circuit using					
		various mapping and mathematical methods.					
2	To propose students to perform the englysis and						
2.	To prepare students to perform the analysis and design of various digital electronic circuits.	Students would understand, analyze and design various combinational and sequential					
	design of various digital electronic circuits.	circuits.					
	Operating Sys						
1.	To make students learn different DOS and	Students would be able to execute different					
1.	Linux commands using command line interface	DOS and Linux commands using command					
	and shell.	line interface and shell.					
2.	To make students understand different utilities	Students would be able to understand					
	provided by Windows and Linux operating	different utilities provided by Windows and					
	system.	Linux operating system.					
	Discrete Mather						
1.	To make students learn the main features of	Students would be able to understand the					
	SCILAB program development environment.	main features of SCILAB program					
		development environment.					
2.	To make students learn to implement simple	Students would be able to implement simple					
	mathematical functions in SCILAB.	mathematical functions in SCILAB.					
	Communication	Skills Practical					
1.	To make students learn contemporary	Students would understand standard					
	communication practices.	practices of formal written communication.					
2.	To enable students to gain confidence in	Students would be able to understand					
	communication	interpersonal and group communication					
	1	through experiential activities.					

F.Y.B.Sc. (IT) (Sem II)

SN	LEARNING OBJECTIVES	LEARNING OUTCOMES				
	Object oriented Programming					
1.	To enable students to understand object-	Students would be able to understand the				
	oriented programming.	basic concept of Object Oriented				
		Programming.				
2.	To explain the difference between object-	Students would be able to understand the				
	oriented programming and procedural	basics of computer programming. The				
	programming.	problem solving approaches in different				
		programming languages, variables, operators.				
3.	To teach the various types of statements	Students would be able to understand the				
	and looping constructs.	purpose of control statements: selection and				
		looping statements.				
	Microprocessor Architecture					
1.	To enable the students to learn the concept	Students will learn to apply the fundamentals				
	of assembly languages and acquire	of assembly language and acquire basic				
	knowledge about 8085 microprocessor.	knowledge of microprocessors.				
2.	To educate the students about 8085	Students would be able to understand the				
	architecture and instruction set.	history and architecture of microprocessors				
		and 8085 instruction set.				
		Programming				
1.	To make the students learn web history,	Students would be able to learn standard				
	website organization, HTML, graphics	compliant CSS and JavaScript to present				
	use, page and site design, with a brief look	HTML5 pages.				
	at CSS, and JavaScript.					
2.	To enable students learn the basic and	Students would be able to understand the				
	advanced PHP programming with	basic and advanced PHP programming with				
	Database connectivity using MYSQL. Database connectivity using MYSQL.					
	Numerical and Sta					
1.	To make the students analyze the errors	Students will be able to analyze the errors				
	obtained in the numerical solution of	obtained in the numerical solution of				
	problems.	problems.				
2.	To help students to learn the use of	Students will be able to use appropriate				
	appropriate numerical method to	numerical method to determine approximate				
	determine approximate solution of	solution of, algebraic and transcendental				
	algebraic and transcendental equations,	equations, system of linear equation, ordinary				
	system of linear equations, ordinary	differential equation and integration.				
2	differential equation and integration.	C4-1-4				
3.	To make students learn modelling and	Students will be able to model and solve				
4	solving linear programming problems.	linear programming problems.				
4.	To make students learn an illustration and	Students will be able to illustrate and				

	formanistica of much shility distribution and	formentate much chility distribution and density				
	formulation of probability distribution and	formulate probability distribution and density functions.				
	density functions.					
1	Green Computing					
1.	To make students understand and develop	Students will be able to understand the				
	special skills such as energy efficiency,	concept of green IT and relate it to sustainable				
	ethical IT assets disposal, carbon footprint	development and apply the green computing				
	estimation, reporting and development of	practices to save energy and develop special				
	green products, applications and services.	skills such as energy efficiency, ethical IT				
		assets disposal, carbon footprint estimation,				
		reporting and development of green products,				
		applications and services.				
2.	To educate students about appropriate	Students will learn how the choice of				
	hardware and software for feasible	hardware and software can help a more				
	operations.	feasible operation.				
		Programming Practical				
1.	To enable students to program using C++	Students will learn to develop an application				
	features such as operator overloading,	using C++, design and implement object				
	inheritance, polymorphism, file I/O,	oriented (OO) programs to solve problems.				
	exception handling, etc.					
2.	To enable students to build C++ classes	Students will be able to analyze polymorphic				
	using appropriate encapsulation and	behavior of objects and virtual base class.				
2	design principles.					
3.	Ultimate goal is to make students a good	Students will be able to specify the types of				
	programmer.	inheritance and use them in programs.				
1	_	Architecture Practical				
1.	To develop assembly programs using	Students will learn to build a program on a				
	8085 microprocessors. microprocessor using instruction set of 8085					
1.	Web Programming Practical					
1.	To teach how to design websites and webpages using HTML, CSS, JavaScript	Students will be able to design dynamic websites that meet specified needs and				
	and PHP.	interests HTML5, CSS, JavaScript and PHP.				
2.	To be able to build dynamic webpages	Students will be able to build dynamic				
۷.	with back end connectivity using PHP and	webpages or websites using PHP				
	MYSQL.	programming & Database connectivity				
	MTSQL.	(MYSQL).				
	Numerical and Sta	tistical Methods Practical				
1.	Students will be taught to write programs	Students will be able to write programs for				
1.	for various numerical methods.	various numerical methods.				
		nputing Practical				
1.	To create awareness about how different	Students will be able to learn how different				
''	countries in world dispose e-waste and	countries in world dispose e-waste and				
	implement Green Computing practices.	implement Green Computing practices.				
2.	To make them aware about e-waste	Students will have awareness about e-waste				
	disposal in surroundings.	disposal in surroundings.				
	disposai in surroundings.	disposai in surroundings.				